from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
↳ QTRS
↳ Overlay + Local Confluence
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
PLUS(s(X), Y) → PLUS(X, Y)
PI(X) → 2NDSPOS(X, from(0))
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
PI(X) → FROM(0)
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
PLUS(s(X), Y) → PLUS(X, Y)
PI(X) → 2NDSPOS(X, from(0))
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
PI(X) → FROM(0)
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
TIMES(s(X), Y) → TIMES(X, Y)
PI(X) → FROM(0)
SQUARE(X) → TIMES(X, X)
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(X), Y) → PLUS(X, Y)
s1 > PLUS1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
TIMES(s(X), Y) → TIMES(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(s(X), Y) → TIMES(X, Y)
s1 > TIMES1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
2NDSPOS(s(N), cons(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons(X, cons(Y, Z))) → 2NDSPOS(N, Z)
s1 > 2NDSPOS1 > 2NDSNEG1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(x0)
2ndspos(0, x0)
2ndspos(s(x0), cons(x1, cons(x2, x3)))
2ndsneg(0, x0)
2ndsneg(s(x0), cons(x1, cons(x2, x3)))
pi(x0)
plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
square(x0)